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Challenges in the Wide-area
Trends:
! Exponential growth in CPU, storage
! Network expanding in reach and b/w

Can applications leverage new resources?
! Scalability: increasing users, requests, traffic
! Resilience: more components " inversely low 

MTBF
! Management: intermittent resource availability "

complex management schemes
Proposal: an infrastructure that solves these 
issues and passes benefits onto applications
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Driving Applications
Leverage of cheap & plentiful resources: 
CPU cycles, storage, network bandwidth
Global applications share distributed 
resources
! Shared computation:

! SETI, Entropia
! Shared storage

! OceanStore, Gnutella, Scale-8
! Shared bandwidth

! Application-level multicast, content distribution networks
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Key: Location and Routing

Hard problem:
! Locating and messaging to resources and data

Goals for a wide-area overlay infrastructure
! Easy to deploy
! Scalable to millions of nodes, billions of objects
! Available in presence of routine faults
! Self-configuring, adaptive to network changes
! Localize effects of operations/failures
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Talk Outline
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Tapestry overview

Fault-tolerant operation

Deployment / evaluation

Related / ongoing work
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What is Tapestry?
A prototype of a decentralized, scalable, fault-
tolerant, adaptive location and routing infrastructure
(Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)
Network layer of OceanStore
Routing: Suffix-based hypercube
! Similar to Plaxton, Rajamaran, Richa (SPAA97)

Decentralized location:
! Virtual hierarchy per object with cached location references

Core API:
! publishObject(ObjectID, [serverID])
! routeMsgToObject(ObjectID)
! routeMsgToNode(NodeID)
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Routing and Location

Namespace (nodes and objects)
! 160 bits " 280 names before name collision
! Each object has its own hierarchy rooted at Root

f (ObjectID) = RootID, via a dynamic mapping function

Suffix routing from A to B
! At hth hop, arrive at nearest node hop(h) s.t. 

hop(h) shares suffix with B of length h digits
! Example: 5324 routes to 0629 via

5324 " 2349 " 1429 " 7629 " 0629
Object location:
! Root responsible for storing object’s location
! Publish / search both route incrementally to root
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Publish / Lookup
Publish object with ObjectID:
// route towards “virtual root,” ID=ObjectID
For (i=0, i<Log2(N), i+=j) {    //Define hierarchy

! j is # of bits in digit size, (i.e. for hex digits, j = 4 )
! Insert entry into nearest node that matches on

last i bits
! If no matches found, deterministically choose alternative
! Found real root node, when no external routes left

Lookup object
Traverse same path to root as publish, except search for entry 
at each node
For (i=0, i<Log2(N), i+=j) {

! Search for cached object location
! Once found, route via IP or Tapestry to object
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Tapestry Mesh
Incremental suffix-based routing
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Routing in Detail

5712

0880

3210

7510

4510

Neighbor Map
For “5712” (Octal)

Routing Levels
1234

xxx1

5712

xxx0

xxx3
xxx4
xxx5

xxx6
xxx7

xx02
5712

xx22
xx32
xx42
xx52

xx62
xx72

x012
x112

x212
x312
x412
x512

x612
5712

0712
1712

2712
3712
4712
5712

6712
7712

5712 0 1 2 3 4 5 6 7

0880 0 1 2 3 4 5 6 7

3210 0 1 2 3 4 5 6 7

4510 0 1 2 3 4 5 6 7

7510 0 1 2 3 4 5 6 7

Example: Octal digits, 212 namespace, 5712 " 7510
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Object Location
Randomization and Locality
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Fault-tolerant Location
Minimized soft-state vs. explicit fault-recovery
Redundant roots
! Object names hashed w/ small salts " multiple 

names/roots
! Queries and publishing utilize all roots in parallel
! P(finding reference w/ partition) = 1 – (1/2)n

where n = # of roots
Soft-state periodic republish
! 50 million files/node, daily republish, 

b = 16, N = 2160 , 40B/msg, 
worst case update traffic: 156 kb/s, 

! expected traffic w/ 240 real nodes: 39 kb/s
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Fault-tolerant Routing
Strategy:
! Detect failures via soft-state probe packets
! Route around problematic hop via backup pointers

Handling:
! 3 forward pointers per outgoing route 

(2 backups)
! 2nd chance algorithm for intermittent failures
! Upgrade backup pointers and replace

Protocols:
! First Reachable Link Selection (FRLS)
! Proactive Duplicate Packet Routing
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Summary
Decentralized location and routing infrastructure
! Core routing similar to PRR97
! Distributed algorithms for object-root 

mapping, node insertion / deletion
! Fault-handling with redundancy, 

soft-state beacons, self-repair
! Decentralized and scalable, with locality

Analytical properties
! Per node routing table size: bLogb(N)

! N = size of namespace, n = # of physical nodes
! Find object in Logb(n) overlay hops
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Deployment Status

Java Implementation in OceanStore
! Running static Tapestry
! Deploying dynamic Tapestry with fault-

tolerant routing
Packet-level simulator
! Delay measured in network hops
! No cross traffic or queuing delays
! Topologies:  AS, MBone, GT-ITM, TIERS

ns2 simulations
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Evaluation Results
Cached object pointers
! Efficient lookup for nearby objects
! Reasonable storage overhead

Multiple object roots
! Improves availability under attack
! Improves performance and perf. stability

Reliable packet delivery
! Redundant pointers approximate optimal 

reachability
! FRLS, a simple fault-tolerant UDP protocol
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First Reachable Link 
Selection

Use periodic UDP packets 
to gauge link condition
Packets routed to shortest 
“good” link
Assumes IP cannot correct 
routing table in time for 
packet delivery

A
B
C
D
E

IP Tapestry

No path exists to dest.
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Bayeux
Global-scale application-level multicast
(NOSSDAV 2001)
Scalability
! Scales to > 105 nodes
! Self-forming member group partitions

Fault tolerance
! Multicast root replication
! FRLS for resilient packet delivery

More optimizations
! Group ID clustering for better b/w utilization
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Overlay Routing Networks
CAN: Ratnasamy et al., (ACIRI / UCB)
! Uses d-dimensional coordinate space to 

implement distributed hash table
! Route to neighbor closest to destination 

coordinate

Chord: Stoica, Morris, Karger, et al., 
(MIT / UCB)
! Linear namespace modeled as circular 

address space
! “Finger-table” point to logarithmic # of inc. 

remote hosts

Pastry: Rowstron and Druschel 
(Microsoft / Rice )
! Hypercube routing similar to PRR97
! Objects replicated to servers by name

Fast Insertion / Deletion
Constant-sized routing state
Unconstrained # of hops
Overlay distance not  prop. to
physical distance
Simplicity in algorithms
Fast fault-recovery
Log2(N) hops and routing state
Overlay distance not prop. to 
physical distance

Fast fault-recovery
Log(N) hops and routing state
Data replication required for 
fault-tolerance
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Ongoing Research
Fault-tolerant routing
! Reliable Overlay Networks (MIT)
! Fault-tolerant Overlay Routing (UCB)

Application-level multicast
! Bayeux (UCB), CAN (AT&T), 

Scribe and Herald (Microsoft)
File systems
! OceanStore (UCB)
! PAST (Microsoft / Rice)
! Cooperative File System (MIT)
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For More Information

Tapestry:
http://www.cs.berkeley.edu/~ravenben/tapestry

OceanStore:
http://oceanstore.cs.berkeley.edu

Related papers:
http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@cs.berkeley.edu


