

Stanford Networking Seminar October 2001

Ben Y. Zhao ravenben @eecs.berkeley.edu

Challenges in the Wide-area

- Trends:
 - Exponential growth in CPU, storage
 - Network expanding in reach and b/w
- Can applications leverage new resources?
 - Scalability: increasing users, requests, traffic
 - Resilience: more components → inversely low MTBF
 - Management: intermittent resource availability ->
 complex management schemes
- Proposal: an infrastructure that solves these issues and passes benefits onto applications

Stanford Networking Seminar, 10/2001

Driving Applications

- Leverage of cheap & plentiful resources: CPU cycles, storage, network bandwidth
- Global applications share distributed resources
 - Shared computation:
 - SETI, Entropia
 - Shared storage
 - OceanStore, Gnutella, Scale-8
 - Shared bandwidth
 - Application-level multicast, content distribution networks

Stanford Networking Seminar, 10/2001

3

Key: Location and Routing

- Hard problem:
 - Locating and messaging to resources and data
- Goals for a wide-area overlay infrastructure
 - Easy to deploy
 - Scalable to millions of nodes, billions of objects
 - Available in presence of routine faults
 - Self-configuring, adaptive to network changes
 - Localize effects of operations/failures

Stanford Networking Seminar, 10/2001

Talk Outline

- Motivation
- Tapestry overview
- Fault-tolerant operation
- Deployment / evaluation
- Related / ongoing work

Stanford Networking Seminar, 10/2001

5

What is Tapestry?

- A prototype of a decentralized, scalable, faulttolerant, adaptive location and routing infrastructure (Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)
- Network layer of OceanStore
- Routing: Suffix-based hypercube
 - Similar to Plaxton, Rajamaran, Richa (SPAA97)
- Decentralized location:
 - Virtual hierarchy per object with cached location references
- Core API:
 - publishObject(ObjectID, [serverID])
 - routeMsgToObject(ObjectID)
 - routeMsgToNode(NodeID)

Stanford Networking Seminar, 10/2001

Routing and Location

- Namespace (nodes and objects)
 - 160 bits → 280 names before name collision
 - Each object has its own hierarchy rooted at Root
 f(ObjectID) = RootID, via a dynamic mapping function
- Suffix routing from A to B
 - At hth hop, arrive at nearest node hop(h) s.t. hop(h) shares suffix with B of length h digits
 - Example: 5324 routes to 0629 via
 5324 → 2349 → 1429 → 7629 → 0629
- Object location:
 - Root responsible for storing object's location
 - Publish / search both route incrementally to root

Stanford Networking Seminar, 10/2001

7

Publish / Lookup

Publish object with ObjectID:

// route towards "virtual root," ID=ObjectID For (i=0, i<Log₂(N), i+=j) { //Define hierarchy

- j is # of bits in digit size, (i.e. for hex digits, j = 4)
- Insert entry into nearest node that matches on last i bits
- If no matches found, deterministically choose alternative
- Found real root node, when no external routes left
- Lookup object

Traverse same path to root as publish, except search for entry at each node

For (i=0, i<Log₂(N), i+=j) {

- Search for cached object location
- Once found, route via IP or Tapestry to object

Stanford Networking Seminar, 10/2001

Fault-tolerant Location

- Minimized soft-state vs. explicit fault-recovery
- Redundant roots
 - Object names hashed w/ small salts → multiple names/roots
 - Queries and publishing utilize all roots in parallel
 - P(finding reference w/ partition) = $1 (1/2)^n$ where n = # of roots
- Soft-state periodic republish
 - 50 million files/node, daily republish, b = 16, N = 2¹⁶⁰, 40B/msg, worst case update traffic: 156 kb/s,
 - expected traffic w/ 2⁴⁰ real nodes: 39 kb/s

Stanford Networking Seminar, 10/2001

13

Fault-tolerant Routing

- Strategy:
 - Detect failures via soft-state probe packets
 - Route around problematic hop via backup pointers
- Handling:
 - 3 forward pointers per outgoing route (2 backups)
 - 2nd chance algorithm for intermittent failures
 - Upgrade backup pointers and replace
- Protocols:
 - First Reachable Link Selection (FRLS)
 - Proactive Duplicate Packet Routing

Stanford Networking Seminar, 10/2001

Summary

- Decentralized location and routing infrastructure
 - Core routing similar to PRR97
 - Distributed algorithms for object-root mapping, node insertion / deletion
 - Fault-handling with redundancy, soft-state beacons, self-repair
 - Decentralized and scalable, with locality
- Analytical properties
 - Per node routing table size: bLog_b(N)
 - N = size of namespace, n = # of physical nodes
 - Find object in $Log_b(n)$ overlay hops

Stanford Networking Seminar, 10/2001

15

Talk Outline

- Motivation
- Tapestry overview
- Fault-tolerant operation
- Deployment / evaluation
- Related / ongoing work

Stanford Networking Seminar, 10/2001

Deployment Status

- Java Implementation in OceanStore
 - Running static Tapestry
 - Deploying dynamic Tapestry with faulttolerant routing
- Packet-level simulator
 - Delay measured in network hops
 - No cross traffic or queuing delays
 - Topologies: AS, MBone, GT-ITM, TIERS
- ns2 simulations

Stanford Networking Seminar, 10/2001

17

Evaluation Results

- Cached object pointers
 - Efficient lookup for nearby objects
 - Reasonable storage overhead
- Multiple object roots
 - Improves availability under attack
 - Improves performance and perf. stability
- Reliable packet delivery
 - Redundant pointers approximate optimal reachability
 - FRLS, a simple fault-tolerant UDP protocol

Stanford Networking Seminar, 10/2001

Bayeux Global-scale application-level multicast (NOSSDAV 2001) Scalability Scales to > 10⁵ nodes Self-forming member group partitions Fault tolerance Multicast root replication FRLS for resilient packet delivery More optimizations Group ID clustering for better b/w utilization

Ongoing Research

- Fault-tolerant routing
 - Reliable Overlay Networks (MIT)
 - Fault-tolerant Overlay Routing (UCB)
- Application-level multicast
 - Bayeux (UCB), CAN (AT&T), Scribe and Herald (Microsoft)
- File systems
 - OceanStore (UCB)
 - PAST (Microsoft / Rice)
 - Cooperative File System (MIT)

Stanford Networking Seminar, 10/2001

25

For More Information

Tapestry:

http://www.cs.berkeley.edu/~ravenben/tapestry

OceanStore:

http://oceanstore.cs.berkeley.edu

Related papers:

http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@cs.berkeley.edu

Stanford Networking Seminar, 10/2001