
1

Tapestry: Scalable and
Fault-tolerant
Routing and Location

Stanford Networking Seminar
October 2001

Ben Y. Zhao
ravenben@eecs.berkeley.edu

Stanford Networking Seminar, 10/2001 2

Challenges in the Wide-area
Trends:
! Exponential growth in CPU, storage
! Network expanding in reach and b/w

Can applications leverage new resources?
! Scalability: increasing users, requests, traffic
! Resilience: more components " inversely low

MTBF
! Management: intermittent resource availability "

complex management schemes
Proposal: an infrastructure that solves these
issues and passes benefits onto applications

2

Stanford Networking Seminar, 10/2001 3

Driving Applications
Leverage of cheap & plentiful resources:
CPU cycles, storage, network bandwidth
Global applications share distributed
resources
! Shared computation:

! SETI, Entropia
! Shared storage

! OceanStore, Gnutella, Scale-8
! Shared bandwidth

! Application-level multicast, content distribution networks

Stanford Networking Seminar, 10/2001 4

Key: Location and Routing

Hard problem:
! Locating and messaging to resources and data

Goals for a wide-area overlay infrastructure
! Easy to deploy
! Scalable to millions of nodes, billions of objects
! Available in presence of routine faults
! Self-configuring, adaptive to network changes
! Localize effects of operations/failures

3

Stanford Networking Seminar, 10/2001 5

Talk Outline

Motivation

Tapestry overview

Fault-tolerant operation

Deployment / evaluation

Related / ongoing work

Stanford Networking Seminar, 10/2001 6

What is Tapestry?
A prototype of a decentralized, scalable, fault-
tolerant, adaptive location and routing infrastructure
(Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)
Network layer of OceanStore
Routing: Suffix-based hypercube
! Similar to Plaxton, Rajamaran, Richa (SPAA97)

Decentralized location:
! Virtual hierarchy per object with cached location references

Core API:
! publishObject(ObjectID, [serverID])
! routeMsgToObject(ObjectID)
! routeMsgToNode(NodeID)

4

Stanford Networking Seminar, 10/2001 7

Routing and Location

Namespace (nodes and objects)
! 160 bits " 280 names before name collision
! Each object has its own hierarchy rooted at Root

f (ObjectID) = RootID, via a dynamic mapping function

Suffix routing from A to B
! At hth hop, arrive at nearest node hop(h) s.t.

hop(h) shares suffix with B of length h digits
! Example: 5324 routes to 0629 via

5324 " 2349 " 1429 " 7629 " 0629
Object location:
! Root responsible for storing object’s location
! Publish / search both route incrementally to root

Stanford Networking Seminar, 10/2001 8

Publish / Lookup
Publish object with ObjectID:
// route towards “virtual root,” ID=ObjectID
For (i=0, i<Log2(N), i+=j) { //Define hierarchy

! j is # of bits in digit size, (i.e. for hex digits, j = 4)
! Insert entry into nearest node that matches on

last i bits
! If no matches found, deterministically choose alternative
! Found real root node, when no external routes left

Lookup object
Traverse same path to root as publish, except search for entry
at each node
For (i=0, i<Log2(N), i+=j) {

! Search for cached object location
! Once found, route via IP or Tapestry to object

5

Stanford Networking Seminar, 10/2001 9

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3
2

4

Tapestry Mesh
Incremental suffix-based routing

NodeID
0x43FE

NodeID
0x13FENodeID

0xABFE

NodeID
0x1290

NodeID
0x239E

NodeID
0x73FE

NodeID
0x423E

NodeID
0x79FE

NodeID
0x23FE

NodeID
0x73FF

NodeID
0x555E

NodeID
0x035E

NodeID
0x44FE

NodeID
0x9990

NodeID
0xF990

NodeID
0x993E

NodeID
0x04FE

NodeID
0x43FE

Stanford Networking Seminar, 10/2001 10

Routing in Detail

5712

0880

3210

7510

4510

Neighbor Map
For “5712” (Octal)

Routing Levels
1234

xxx1

5712

xxx0

xxx3
xxx4
xxx5

xxx6
xxx7

xx02
5712

xx22
xx32
xx42
xx52

xx62
xx72

x012
x112

x212
x312
x412
x512

x612
5712

0712
1712

2712
3712
4712
5712

6712
7712

5712 0 1 2 3 4 5 6 7

0880 0 1 2 3 4 5 6 7

3210 0 1 2 3 4 5 6 7

4510 0 1 2 3 4 5 6 7

7510 0 1 2 3 4 5 6 7

Example: Octal digits, 212 namespace, 5712 " 7510

6

Stanford Networking Seminar, 10/2001 11

Object Location
Randomization and Locality

Stanford Networking Seminar, 10/2001 12

Talk Outline

Motivation

Tapestry overview

Fault-tolerant operation

Deployment / evaluation

Related / ongoing work

7

Stanford Networking Seminar, 10/2001 13

Fault-tolerant Location
Minimized soft-state vs. explicit fault-recovery
Redundant roots
! Object names hashed w/ small salts " multiple

names/roots
! Queries and publishing utilize all roots in parallel
! P(finding reference w/ partition) = 1 – (1/2)n

where n = # of roots
Soft-state periodic republish
! 50 million files/node, daily republish,

b = 16, N = 2160 , 40B/msg,
worst case update traffic: 156 kb/s,

! expected traffic w/ 240 real nodes: 39 kb/s

Stanford Networking Seminar, 10/2001 14

Fault-tolerant Routing
Strategy:
! Detect failures via soft-state probe packets
! Route around problematic hop via backup pointers

Handling:
! 3 forward pointers per outgoing route

(2 backups)
! 2nd chance algorithm for intermittent failures
! Upgrade backup pointers and replace

Protocols:
! First Reachable Link Selection (FRLS)
! Proactive Duplicate Packet Routing

8

Stanford Networking Seminar, 10/2001 15

Summary
Decentralized location and routing infrastructure
! Core routing similar to PRR97
! Distributed algorithms for object-root

mapping, node insertion / deletion
! Fault-handling with redundancy,

soft-state beacons, self-repair
! Decentralized and scalable, with locality

Analytical properties
! Per node routing table size: bLogb(N)

! N = size of namespace, n = # of physical nodes
! Find object in Logb(n) overlay hops

Stanford Networking Seminar, 10/2001 16

Talk Outline

Motivation

Tapestry overview

Fault-tolerant operation

Deployment / evaluation

Related / ongoing work

9

Stanford Networking Seminar, 10/2001 17

Deployment Status

Java Implementation in OceanStore
! Running static Tapestry
! Deploying dynamic Tapestry with fault-

tolerant routing
Packet-level simulator
! Delay measured in network hops
! No cross traffic or queuing delays
! Topologies: AS, MBone, GT-ITM, TIERS

ns2 simulations

Stanford Networking Seminar, 10/2001 18

Evaluation Results
Cached object pointers
! Efficient lookup for nearby objects
! Reasonable storage overhead

Multiple object roots
! Improves availability under attack
! Improves performance and perf. stability

Reliable packet delivery
! Redundant pointers approximate optimal

reachability
! FRLS, a simple fault-tolerant UDP protocol

10

Stanford Networking Seminar, 10/2001 19

First Reachable Link
Selection

Use periodic UDP packets
to gauge link condition
Packets routed to shortest
“good” link
Assumes IP cannot correct
routing table in time for
packet delivery

A
B
C
D
E

IP Tapestry

No path exists to dest.

Stanford Networking Seminar, 10/2001 20

Talk Outline

Motivation

Tapestry overview

Fault-tolerant operation

Deployment / evaluation

Related / ongoing work

11

Stanford Networking Seminar, 10/2001 21

Bayeux
Global-scale application-level multicast
(NOSSDAV 2001)
Scalability
! Scales to > 105 nodes
! Self-forming member group partitions

Fault tolerance
! Multicast root replication
! FRLS for resilient packet delivery

More optimizations
! Group ID clustering for better b/w utilization

Stanford Networking Seminar, 10/2001 22

13FE
ABFE

1290239E

73FE

423E

793E

44FE

9990

F990

993E

04FE

093E

29FE

F9FE

79FE

555E

035E

23FE

43FE

Multicast
Root

Receiver

Receiver

793E

79FE

79FE

793E

793E
79FE 793E

79FE

Bayeux: Multicast

12

Stanford Networking Seminar, 10/2001 23

13FE
ABFE

1290239E

73FE

423E

793E

44FE

9990

F990

993E

04FE

093E

29FE

F9FE

79FE

555E

035E

23FE

43FE43FE

Multicast
Root

Multicast
Root

Receiver

Receiver

Receiver

JOIN

JOIN

Bayeux: Tree Partitioning

JOIN

Stanford Networking Seminar, 10/2001 24

Overlay Routing Networks
CAN: Ratnasamy et al., (ACIRI / UCB)
! Uses d-dimensional coordinate space to

implement distributed hash table
! Route to neighbor closest to destination

coordinate

Chord: Stoica, Morris, Karger, et al.,
(MIT / UCB)
! Linear namespace modeled as circular

address space
! “Finger-table” point to logarithmic # of inc.

remote hosts

Pastry: Rowstron and Druschel
(Microsoft / Rice)
! Hypercube routing similar to PRR97
! Objects replicated to servers by name

Fast Insertion / Deletion
Constant-sized routing state
Unconstrained # of hops
Overlay distance not prop. to
physical distance
Simplicity in algorithms
Fast fault-recovery
Log2(N) hops and routing state
Overlay distance not prop. to
physical distance

Fast fault-recovery
Log(N) hops and routing state
Data replication required for
fault-tolerance

13

Stanford Networking Seminar, 10/2001 25

Ongoing Research
Fault-tolerant routing
! Reliable Overlay Networks (MIT)
! Fault-tolerant Overlay Routing (UCB)

Application-level multicast
! Bayeux (UCB), CAN (AT&T),

Scribe and Herald (Microsoft)
File systems
! OceanStore (UCB)
! PAST (Microsoft / Rice)
! Cooperative File System (MIT)

Stanford Networking Seminar, 10/2001 26

For More Information

Tapestry:
http://www.cs.berkeley.edu/~ravenben/tapestry

OceanStore:
http://oceanstore.cs.berkeley.edu

Related papers:
http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@cs.berkeley.edu

